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ABSTRACT 

A new parameterization of the hyperbolic tangent function is suggested for easy control of the width of the transi-
tion region between the limiting values of -1 and 1. The hyperbolic tangent function approaches the signum func-
tion as the suggested half-width parameter approaches zero. This permits definition of the rectangular function as 
the limiting case of a combination of two shifted hyperbolic tangent functions. Since all types of ideal frequency re-
ject filter are derived from the rectangular function, the hyperbolic tangent window can also be used for the same 
purpose. The suggested filters are continuities in the whole space and provide an opportunity for easy control of 
the width of the passband, transition band and stopband through adjustment of the half-width parameter. A vari-
ety of examples are provided to instruct the design and application of one- and two-dimensional frequency reject 
filters. The formulation and examples are restricted to four types of filter, namely low-, band- and high-pass, and 
band-stopping filters. However, the results can easily be generalized for any type of frequency reject filter.  
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ÖZ

Tanjant hiperbolik fonksiyonu için -1 ve 1 limit değerleri arasında değișen geçiș bölgesi genișliğinin kolay denetimi 
amacı ile yeni bir parametreleștirme önerilmiștir. Önerilen yarı-genișlik parametresi sıfıra yaklaștığında, tanjant hiper-
bolik fonksiyonu da ișaret fonksiyonuna yaklașmaktadır. Bu özellik, dikdörtgen fonksiyonun, iki kaymıș tanjant hiper-
bolik fonksiyonunun bileșiminin limit durumu olarak tanımlanmasına izin verir.  Bütün ideal frekans seçici süzgeçler 
dikdörtgen fonksiyondan türetildiğinden, hiperbolik tanjant fonksiyonu da aynı amaç için kullanılabilir. Önerilen 
süzgeçler tüm uzayda sürekli olup, geçirme-aralığı, geçiș-aralığı ve durdurma-aralığının genișliklerinin denetlen-
mesini olanaklı kılar. Bir- ve iki-boyutlu frekans seçici süzgeçlerin tasarımı ve uygulaması için örnekler verilmiștir. 
Bağıntılar ve örnekler, alçak-geçișli, aralık-geçișli, yüksek-geçișli ve aralık-durdurucu süzgeçler ile kısıtlı tutulmakla 
birlikte, herhangi bir süzgeç türüne kolaylıkla genelleștirilebilir.
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INTRODUCTION

Digital filters have specific importance to geo-
physical data processing because the signal/
noise ratio has to be increased before the ap-
plication of inversion and other types of data 
interpretation. Linear filter theory is based on 
the definition of a proper window function in 
the frequency domain of a low-pass filter. Other 
filter types such as band-pass, high-pass and 
band-stopping can be derived from a basic 
low-pass filter window through the use of al-
gebraic operations. Several window functions 
have been suggested for the design of digital 
filters, each with their own advantages and dis-
advantages. To this author’s knowledge, the 
hyperbolic tangent (HT) window was first de-
fined by Johansen and Sorensen (1979) and is 
used for the truncation of filter characteristics 
at the Nyquist frequency in order to compute 
a filter coefficient set for the estimation of the 
Hankel transform of a discrete data set. This 
window provides a well-behaved transition 
within the frequency domain with which to trun-
cate the spectrum, thus yielding a less oscil-
lating interpolation function in the time domain 
for discrete Hankel transform computations 
(Christensen, 1990; Sorensen and Christensen, 
1994). Bașokur (1998) adapted the HT window 
for the description of one-dimensional frequen-
cy reject filters, which have subsequently been 
used in various applications.  For example, Do-
maradzki and Carati (2007a, 2007b) were used 
these frequency rejected filters in the analysis 
of nonlinear interactions and energy transfer 
in turbulence. In biology, Opalka et al (2010) 
used the filter described by Bașokur(1998) for 
the enhancement of cryo-images of Eco RNA 
polymerase particles. The HT filters were em-
bedded into SPARX software that is used to 
process the images obtained from the cryo-
electron microscopy (see Baldwin and Penc-
zek, 2007). These applications in varied fields 
indicate a need for the further development of 
HT filters for easy control of the transition band. 
This paper suggests new half-width parameters 
for the direct solution of this problem. Addition-
ally, the basic expressions for the box-shaped 
and radially-symmetric two-dimensional HT fil-
ters are derived both in the time and frequency 
domains. The computer programs and related 

supplementary material that can be requested 
from the author enable both the processing of 
field data and the production of artificial data 
for testing the success of filter design. The lat-
ter is also useful for educational purposes.

ONE-DIMENSIONAL DIGITAL FILTERS

Low-pass filter design

An ideal low-pass filter should reject all fre-
quencies higher than a cutoff frequency of Lf . 
The regions corresponding to frequencies lower 
and higher than the cutoff frequency are called 
passband and stopband, respectively. In prac-
tice however, a gradational attenuation of am-
plitudes is allowed around the cutoff frequency. 
This transition band permits the frequency re-
sponse transition from passband to stopband. 
One of the proper functions for this type of filter 
construction is the P-function, derived in Ap-
pendix A from two shifted HT functions. Rewrit-
ing equation (A12) in the frequency domain gives 
the frequency response of a low-pass filter:

L L
L

L L

2( ) 2( )1
( ) ( ) tanh tanh

2

f f f f
H f P f

r r ,  (1)

where Lr  denotes the half-width of the tran-
sition band. Figure 1a provides examples of 
frequency responses calculated for a variety 
of transition bands that share the same cutoff 
frequency.  The use of the P-function as a fre-
quency response for low-pass filters provides 
an efficient tool to control the width of the 
transition band. The amplitude of frequency re-
sponse is equal to 0.5 at the cutoff frequency. It 
almost equals to unity and zero at the frequen-
cies of ( L Lf r ) and ( L L+f r ), respectively.

If the filter process is applied to digital data it 
is then necessary to multiply the frequency re-
sponse by a rectangular function whose height 
and width are equal to the sampling rate ( t ) 
and its reciprocal, respectively (see for example 
Ghosh, 1971; Basokur, 1983). Since the Nyquist 
frequency ( Nf ) is defined as half of the recipro-
cal of the sampling rate, the filter spectrum is 
given as follows:
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L L N L( )  rect(1/2 ) ( )  rect( ) ( )B f t t H f t f H f= = (2)

The Nyquist frequency is always greater than 
the cutoff frequency and consequently, for a 
low-pass filter, the multiplication of frequency 
response by the rectangular function can only 
result in the multiplication of the frequency re-
sponse by the sampling rate:

L L
L

L L

2( ) 2( )
( ) tanh tanh

2

f f f ft
B f

r r
     (3)

The first step of the filtering operation in the 
frequency domain is to perform a discrete 
Fourier transform of the sampled data. The 

Figure 1.  Low-pass filter responses in the frequency domain with varying transition-band widths of Lr =2.5 Hz (a), 

Lr =10 Hz (b) and Lr =30 Hz (c) calculated for a cutoff frequency of 50 Hz (upper panel) and the corre-

sponding filter coefficients in the time domain (lower panel).

Șekil 1.  Frekans bölgesinde değișen geçiș-aralıkları Lr =2.5 Hz (a), Lr =10 Hz (b) ve Lr =30 Hz (c) için 50 Hz kes-

me frekanslı alçak-geçișli süzgeç yanıtları (üstte) ve bunlara karșılık gelen zaman bölgesi süzgeç katsayıla-
rı (altta).
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transformed data is then multiplied by the filter 
spectrum, and finally the inverse Fourier trans-
form applied to the outcome of this multiplica-
tion yields the filtered data in the time domain.

Since multiplication in the frequency domain 
is equivalent to convolution in the time do-
main, as an alternative procedure digital filter-
ing can also be performed by a convolution of 
the measured data with the inverse transform 
of the filter spectrum. The time domain convo-
lution operator is known as a ‘filter coefficient’ 
that can be easily obtained from the transform 
pair of (A15) by using the symmetry property of 
the Fourier transform:

L L
L L2

N L

sin(2 )
( ) ( )

4 sinh( / 2)

r f t
b t B f

f r t            (4)

where the double arrow denotes the Fourier 
transform pair. L ( )B f  approaches the ideal low-
pass frequency response as the half-width of the 
transition band approaches zero. Correspond-
ingly, L ( )b t  approaches the sinc-response in the 
time domain (see equation A17 in the Appendix) 
since sinh( )x x  for small arguments:

L L

L L L
L20 0N NL

sin(2 ) sin(2 )
lim lim ( )  rect( )

4 2sinh(  / 2)r r

r f t f t
B f t f

f f tr t
   (5)

For the above reason, ideal filters can be con-
sidered as a special case of HT filters, and it is 
sufficient to supply an extremely small transi-
tion band for the construction of an ideal filter. 
The filter coefficients defined in expression (4) 
can be written in a more familiar form by using 
the smoothness parameter of Johansen and 
Sorensen (1979) (see (A16)):

L L
L

N L

sin(2 )
( )

sinh(2 )

f f t
b t

f f t
=                               (6)

where

L

L4

r

f
=

.                                                    (7)

The limits of (4), (6) and the sinc-response ap-
proach the same numerical value for time zero:

L
L

N

(0)
f

b
f

= .                            (8)

As an analogy to the term sinc-response, Jo-
hansen and Sorensen (1979) described a simi-
lar form of (6) as the sinsh-response. In prac-
tice, the use of a newly-derived parameter ( Lr

) is more helpful in controlling the half-width of 
the transition band compared with the smooth-
ness coefficient ( ) given by Johansen and So-
rensen (1979).  Despite this difference, equation 
(4) will hereupon be also referred to as the sin-
sh-response. Figure 1b shows sinsh-responses 
obtained from equation (4) whose filter spectra 
are shown in the upper panel of Figure 1. The 
oscillations of the filter coefficients decrease 
as the transition-band of the filters becomes 
wider in the frequency domain. This property 
provides an opportunity to design relatively 
short filters in the time domain. Some exam-
ples of the application of the filtering operation 
in the time and frequency domains will be pre-
sented in the application section.

Band-pass filter design

An ideal band-pass filter removes all informa-
tion except the frequency band between low- 
and high-cutoff frequencies. Band-pass filters 
can be obtained from the subtraction of two 
low-pass filters with different cutoff frequen-
cies. Figure 2 describes the construction of a 
band-pass filter. The half-width of transition-
bands around low- ( Lf ) and high-cutoff ( Hf ) 
frequencies can be freely selected, permitting 
the independent adjustment of the slope in the 
transition band. Rewriting (1) for two different 
cutoff frequencies and transition-band widths, 
and subtracting one from the other yields 

H H

H H

B

L L

L L

2( ) 2( )
tanh tanh

1
( )

2 2( ) 2( )
 tanh tanh

f f f f

r r
H f

f f f f

r r

=

      

(9)
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where  Lr  and Hr  correspond to the half-
widths of transition-bands at the low- and high-
cutoff frequencies. The filter spectrum can be 
derived from the multiplication of the frequency 
response (equation 9) by the rectangular func-
tion. This yields

B B B( )  rect(1/2 ) ( )  ( )B f t t H f t H f= =      (10)

The inverse Fourier transform of the filter spec-
trum results in the following weight coefficients 
in the time domain:

H L L
B 2 2

N H L

sin(2 ) sin(2 )
( )

4 sinh( / 2) sinh( / 2)

Hr f t r f t
b t

f r t r t
 (11)

H H H L L L
B

N H H N L L

sin(2 ) sin(2 )
( )   -  

sinh(2 ) sinh(2 )

f f t f f t
b t

f f t f f t
=    (12)

B H L N(0) ( ) /  b f f f                                                    (13)

with L L L/ 4r f=
 
and H H H/ 4r f= .

 

Figure 2.  Construction of a band-pass filter by the subtraction of two low-pass filters. The half-width values are 
Hr =20 Hz (a) and Lr =5 Hz (b), corresponding to the half-width of the transition-band at the high-end 

and low-end frequency sides, respectively. The high and low cutoff frequencies are equal to 80 and 20 
Hz. The final band-pass filter presented in (c) exhibits different slopes and widths in the low and high 

transition-band frequencies.

Șekil 2. İki alçak-geçișli süzgecin birbirinden çıkarılması ile aralık-geçișli süzgecin olușturulması. Yarı-genișlik de-

ğerleri Hr =20 Hz (a) ve Lr =5 Hz (b), geçiș bölgesinin sırası ile yüksek ve düșük kesme bölgelerine karșılık 
gelmektedir. Yüksek ve düșük kesme frekansları 80 ve 20 Hz değerlerine eșittir. Elde edilen aralık-geçișli 
süzgecin, düșük ve yüksek geçirme-aralıklarında farklı eğim ve genișliği bulunmaktadır.
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The sample values of the above expression give 
the desired filter coefficients. Other properties 
of the band-pass filter are the same as those of 
the low-pass filter.

High-Pass Filter Design

All frequencies higher than the cutoff frequency 
of Hf  should be passed by an ideal high-pass 
filter. The construction of a high-pass HT fre-
quency response and spectrum is illustrated 
in Figure 3. The frequency response can be 
derived from the subtraction of a low-pass fre-
quency response from unity:

H H
H

H H

1 2( ) 2( )
( ) 1 tanh tanh

2

f f f f
H f

r r
   (14)

where Hf  and Hr  correspond to the high-cut-
off frequency and the half-width of the frequen-
cy response at the transition-band (Figure 3c). 
The multiplication of the frequency response by 
the rectangular function yields the filter spec-
trum (Figure 3d):
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Figure 3.  Development of the filter spectrum for a high-pass filter. A low-pass filter response (b) is subtracted from 
unity (a) to obtain a high-pass frequency response function (c). A multiplication of the filter response by 
the rectangular function, whose height and width are equal to the sampling rate, produces the final filter 

spectrum (d).  Hf
=20 Hz, Nf

=50 Hz, t =0.01 sec, Hr =5 Hz.

Șekil 3.  Yüksek-geçișli süzgecin geliștirilmesi. Yüksek-geçișli süzgeç (c) elde etmek amacı ile alçak-geçișli süz-
geç yanıtı (b), birim değerden (a) çıkartılır. Süzgeç yanıtının, yüksekliği ve genișliği örnekleme aralığına eșit 

olan dikdörtgen fonksiyon ile çarpımı süzgeç izgesini üretir (d). Hf
=20 Hz, Nf

=50 Hz, t =0.01 sn, Hr

=5 Hz.
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H N H( )  rect( ) ( )B f t f H f= ,

H H
H N

H H

2( ) 2( )
( )  rect( ) tanh tanh

2

t f f f f
B f t f

r r  (15)

The inverse Fourier transform of the filter spec-
trum will result in the filter weights in the time 
domain:

N H H
H 2

N N H

sin(2 ) sin(2 )
( )

2 4 sinh( / 2)

f t r f t
b t

f t f r t     (16)

If the filter coefficients are calculated for the 
abscissa values .t n t= m , the numerical val-
ues  of  Nsin(2 )f t , except the origin, then be-
come zero:

H H H H
H 2

N N HH

sin(2 ) sin(2 )
( ) -          . ;  0

4 sinh(2 )sinh( / 2)

r f t f f t
b t t n t n

f f f tr t
m

               

 

          (17)

with H H/ 4r f= . The weight coefficients at 
the centre of the filter can be found by examin-
ing the limit of equation (16) as follows:

H H N(0) 1 /b f f .                                    (18)

 Band-stopping filters

An ideal band-stopping filter rejects frequen-
cies within a predefined frequency band. These 
types of filter are obtained by a summation of 
low-pass and high-pass filters whose cutoff 
frequencies are Lf  and Hf , respectively. The 
sum of expressions (1) and (14) yields

L L
S

L L

H H

H H

1 2( ) 2( )
( ) tanh tanh

2

1 2( ) 2( )
               1 tanh tanh

2

f f f f
H f

r r

f f f f

r r      (19)

The filter spectrum can be obtained by multi-
plying the frequency response by the rectan-
gular function: 

L L

L L

S N

H H

H H

2 ( ) 2 ( )
tanh tanh

( )  rect( )
2 2 ( ) 2 ( )

tanh tanh

 f f  f f
  

r rt
B f t f

 f f  f f
  

r r

= +

      
(20)

The inverse Fourier transform of the filter spec-
trum yields the desired filter coefficients in the 
time domain:

N L L H H
S 2 2

N N L H

sin(2 ) sin(2 ) sin(2 )
( )  +

2 4 sinh( / 2) sinh( / 2)

f t r f t r f t
b t

f t f r t r t    (21)

The first term in the above equation becomes 
zero, except at the origin, if the filter coeffi-
cients are calculated for abscissa values equal 
to .t n t= m :

L H
S 2 2

N L H

sin(2 ) sin(2 )
( )      . ;  0

4 sinh( / 2) sinh( / 2)

L Hr f t r f t
b t t n t n

f r t r t
m

 (22)

The limiting value for the zero abscissa point 
can be derived from (21) as follows:

L H H L

N N N

(0) 1S

f f f f
b 1

f f f
             (23)

An alternative form for expression (22) can be 
given as 

L L H H
S L H

N L L N H H

sin(2 ) sin(2 )
( )     . ;  0

sinh(2 ) sinh(2 )

 f f t f f t
b t   t n t n

 f f t f f t
m

(24)

with L L L/ 4r f=  and H H H/ 4r f= .

TWO-DIMENSIONAL FILTERS 

 Two-dimensional box-shaped filters

The measured data can be dependent on both 
time and distance variables (t-x domain) as is the 
case in seismic. The domain of Fourier trans-
formed data corresponding to distance is the 
spatial frequency (wavenumber), which has a 
dimension defined by the number of cycles per 
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unit distance. The 2D Fourier transform of the 
measured data provides a frequency-wavenum-
ber representation (f-k domain). In such cases, 
the cutoff wavenumber and cutoff frequency 
are likely to differ from each other numerically 
and as a consequence the frequency response 
will resemble a box-shaped function that can be 
expressed as the multiple of one frequency and 
one wavenumber filter; each being a function of 
either frequency or wavenumber:

2L 2L 2L( , ) ( ) ( )H f k H f H k= ,                                       (25)

where

L L
2L

Lf Lf

1 2 ( ) 2 ( )
( ) tanh tanh

2

 f f  f f
H f   

r r
 (26)

L L
2L

Lk Lk

1 2 ( ) 2 ( )
( ) tanh tanh

2

 k k  k k
H k   

r r  (27)

2L ( )H f  and 2L ( )H k  represent one directional 
frequency and wavenumber filters, respective-
ly, and Lfr  and Lkr  are the half-widths of the 

transition-bands corresponding to cutoff fre-
quency ( Lf ) and cutoff wavenumber ( Lk ). Fig-
ures 4a and 4b show one directional frequency 
and wavenumber filters that are perpendicular 
to each other. The multiplication of these one 
directional filters produces a box-shaped two-
dimensional filter as shown in Figure 4c.  An-
other example of the frequency response of a 
2D box-shaped low-pass filter is illustrated in 
Figure 5a for comparison with the responses of 
other types of 2D filter. The derived equations 
also provide the possibility for one directional 
filtering of a 2D data set. For example, the filter 
operation can be carried out in only one direc-
tion by equating either (26) or (27) with the unity 
in equation (25). 

A two-dimensional box-shaped band-pass fre-
quency filter can be produced by the subtrac-
tion of two low-pass filters whose cut-off fre-
quencies and wavenumbers are ( H H;  f k ) and  
( L L;  f k ), respectively: 

2B 2L H H 2L L L( , ) ( , , , ) ( , , , )H f k H f k f k H f k f k    (28)

which can also be written as

Figure 4.  Development of a two-dimensional box-shaped filter by the multiplication of two one-directional filters.

Șekil 4. İki-boyutlu kutu-biçimli süzgecin iki adet tek-yönlü süzgecin çarpımından elde edilmesi.
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2B 2L H 2L H 2L L 2L L( , ) ( , ) ( , ) ( , ) ( , )H f k H f f H k k H f f H k k  (29)

where

H H
2L H

Hf Hf

1 2 ( ) 2 ( )
( , ) tanh tanh

2

 f f  f f
H f f   

r r
  (30)

H H
2L H

Hk Hk

1 2 ( ) 2( )
( , ) tanh tanh

2

 k k k k
H k k   

r r
  (31)

L L
2L L

Lf Lf

1 2 ( ) 2 ( )
( , ) tanh tanh

2

 f f  f f
H f f   

r r
  (32)

L L
2L L

Lk Lk

1 2 ( ) 2 ( )
( , ) tanh tanh

2

 k k  k k
H k k   

r r     (33)

In the above expressions, r denotes the half-
width of the corresponding transition-band. 
Figure 5b shows a 2D box-shaped band-pass 
filter. The low-end frequency of the filter pass-
band and half-width of the transition band on 
the low-end frequency side are 13 and 2 Hz, 
respectively, while the high-end frequency and 
corresponding half-width are 35 and 3 Hz. The 
same numerical values are used for the wave-
number filter so that multiplication of the filters 
produces a square-shaped 2D band-pass filter. 

Figure 5.  Frequency responses of two-dimensional box-shaped (left panel, a, b, c and d) and radially symmetric 
filters (right panel, e, f, g and h). The low and high cutoff frequencies are 13 and 35 Hz, with correspond-
ing half-widths equal to 2 and 3 Hz, respectively.

Șekil 5. İki-boyutlu kutu-biçimli (sol panel, a, b, c ve d) ve ıșınsal bakıșımlı (sağ panel, e, f, g ve h) süzgeç yanıtları. 
13 ve 35 Hz alçak ve yüksek kesme frekansları değerlerine, sırası ile 2 ve 3 Hz yarı-genișlik değerleri karșı-
lık gelmektedir.
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A 2D high-pass frequency response can be 
constructed by the subtraction from unity of a 
low-pass frequency response whose cutoff fre-
quency and wavenumber are equal to Hf  and 

Hk , respectively:

2H 2H 2H( , ) 1 ( ) ( )H f k H f H k                                     (34)

where 

H H
2H

Hf Hf

1 2 ( ) 2 ( )
( ) tanh tanh

2

 f f  f f
H f   

r r
    (35)

H H
2H

Hk Hk

1 2 ( ) ( )
( ) tanh tanh

2

 k k 2 k k
H k   

r r       (36)

Hfr  and Hkr  are the half-widths of transition-
bands corresponding to a cutoff frequency of 

Hf  and a wavenumber of Hk . Figure 5c shows 
a box-shaped high-pass filter obtained from 
the subtraction of a low-pass filter from unity. 
The cutoff frequencies and half-width values in 
both directions are equal to 35 and 3 Hz, re-
spectively.

Any other type of filter can be developed by us-
ing two or more of the above-mentioned three 
basic low-, band- and high-pass filters. For ex-
ample, a band-stopping filter can be produced 
from the sum of low- and high-pass filters. Fig-
ure 5d shows a band-stopping filter obtained 
from the sum of the low- and high-pass filters 
illustrated in Figures 5a and 5c, respectively.

The filter spectra of the above-mentioned fil-
ters can be calculated via the multiplication 
of the frequency response by two 2D rectan-
gular functions whose widths are equal to the 
Nyquist frequency and wavenumber, respec-
tively. The heights of the rectangular functions 
should be equal to half the reciprocal of the 
Nyquist frequency and wavenumber, respec-
tively. The spectrum of any specific filter can 
then be obtained as follows:

N N
N N

1 1
( , ) rect( ) rect( ) ( , )

2 2
B f k f k H f k

f k
= ,

1 1
( , )  rect  rect ( , )

2 2
B f k t x H f k

t x
=         (37)

Since the cutoff values of all low-pass filters 
are always less than the Nyquist frequency and 
wavenumber, the multiplication in equation (37) 
reduces to 

2L 2L 2L( , )   ( ) ( )B f k t x H f H k=                              (38)

The equation for a band-pass filter can be de-
rived as follows:

{ }2B 2L H H 2L L L( , )   ( , , , ) ( , , , )B f k t x H f k f k H f k f k    (39)

However, the rectangular function remains in 
the high-pass filter equation derived from (34) 
and (37): 

( ) ( )2H N N 2H 2H( , )  rect  rect   ( ) ( )B f k t f x k t x H f H k    (40)

2D box-shaped filters can also be designed in 
the time domain. The inverse Fourier transforms 
of the filter spectra provide the desired filter co-
efficients in the t-x domain. The low-pass filter 
coefficients can then be calculated from the in-
verse Fourier transform of equation (38):

t L L x L
2L t

N t L N x L

sin(2 ) sin(2 )
( , )   . ,   .

sinh(2 ) sinh(2 )

L f f t  k k x
b t x     t n t x m x

 f f t  k k x
= = =m m    (41)

where t Lf L/ 4r f= and x Lk L/ 4r k= .

The limiting values of filter coefficients for zero 
values of time and spatial variables can be writ-
ten as

L x L L
2L

N N x L

sin(2 )
(0, )      0,   .

sinh(2 )

 f  k k x
b x    t x m x

 f  k k x
= = = m     (42)

L L L
2L t

N t L N

sin(2 )
( ,0)      . ,   0

sinh(2 )

 f f t  k
b t    t n t x

 f f t  k
= = =m      (43)

L L
2L

N N

(0,0)
  f   k

b  
 f  k

= .         (44)

The filter coefficients for the band-pass filter 
can be derived using the subtraction of two 
low-pass filters, namely

2B 2L H H 2L L L( , ) ( , , , ) ( , , , )b t x b t x f k b t x f k (45)

where
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H H H H
2L H H tH xH

N tH H N xH H

sin(2 ) sin(2 )
( , , , )

sinh(2 ) sinh(2 )

 f f t  k k x
b t x f k    

 f f t  k k x
=  (46)

L L L L
2L L L tL xL

N tL L N xL L

sin(2 ) sin(2 )
( , , , )

sinh(2 ) sinh(2 )

 f f t  k k x
b t x f k    

 f f t  k k x
=   (47)

The subscripts of the  coefficients indicate 
the relevant variables and cutoff values. The 
limiting values of the above expressions can be 
obtained by assigning zero values to the cor-
responding variables:

H xH H H L xL L L
2B

N N xH H N N xL L

sin(2 ) sin(2 )
(0, )

sinh(2 ) sinh(2 )

 f  k k x  f  k k x
b x     

 f  k k x  f  k k x
    (48)

tH H H H tL L L L
2B

N tH H N N tL L N

sin(2 ) sin(2 )
( ,0)

sinh(2 ) sinh(2 )

 f f t  k  f f t  k
b t     

 f f t  k  f f t  k
  (49)

H H L L
2B

N N

(0,0)
 f k f k

b  
 f k

=                                                                    (50)

In a similar way, the filter coefficients of a high-
pass filter can be derived from the inverse 
transform of (40) that gives

2H 2L N N 2L H H( , ) ( , , , ) ( , , , )b t x b t x f k b t x f k    (51)

where

N N
2L N N

N N

sin(2 ) sin(2 )
( , , , )

2 2 )

f t k x
b t x f k  

f t k x
=   (52)

tH H H xH H H
2L H H

N tH H N xH H

sin(2 ) sin(2 )
( , , , )

sinh(2 ) sinh(2 )

 f f t  k k x
b t x f k    

 f f t  k k x
=      (53)

Equation (52) is always zero, except at points 
where t=0; x=0 and it becomes equal to unity. 
Accordingly, the filter coefficients of a high-
pass filter can be computed from the following 
equations:

tH H H xH H
2H

N tH H N xH H

sin(2 ) sin(2 )
( , )    0,  0

sinh(2 ) sinh(2 )

H f f t  k k x
b t x    t x

 f f t  k k x
    (54)

H xH H H
2H

N N xH H

sin(2 )
(0, )    0,  0

sinh(2 )

 f  k k x
b x     t x

 f  k k x
     (55)

tH H H H
2H

N tH H N

sin(2 )
( ,0)    0,  0

sinh(2 )

 f f t  k
b t    t x

 f f t  k
           (56)

H H
2H

N N

(0,0) 1
 f  k

b    
 f  k

                                                                    (57)

The band-stopping filters can be produced 
from the sum of the low- and high-pass filters, 
but are not given here for the sake of brevity.

Two-dimensional radially symmetric filters

In many geological and geophysical investi-
gation techniques (for example of gravity and 
magnetic methods), data are only dependent 
on spatial coordinates, with the two orthogonal 
coordinates such as the x-axis and y-axis in dis-
tance defining the space domain. The domain 
of Fourier transformed data is spatial frequency 
(wavenumber) ( x yk k  or u-v) and has a dimen-
sion defined by the number of cycles per unit 
distance. Such filters are usually designed as 
radially symmetric, so that the cutoff wavenum-
ber becomes independent of direction.  The 
wavenumber response of a 2D radially symmet-
ric low-pass filter can be derived from the cor-
responding 1D filter (equation 1) by substituting 
frequency (f ) with the variable 

2 2
x yk k k= +

:

L L
RL

L L

1 ( ) ( )
( ) tanh tanh

2

2 k k 2 k k
H k

r r
                (58)

where Lk  and Lr  denote the cutoff wavenum-
ber and the half-width of the transition-band 
(see Figure 5e). Using equation (2), the filter 
spectrum can be written as follows:

L L
RL

L L

2( ) 2( )
( ) tanh tanh

2

x y k k k k
B k

r r
   (59)

In a similar way, the other 2D symmetric wav-
enumber responses can be derived from their 
1D counterparts via the same operation through 
equations (9), (14) and (19), respectively. In the 
wavenumber domain, the filtering operation is 
carried out via the multiplication of the filter 
spectrum by the Fourier transform of the data. 
The inverse Fourier transform then yields the 
filtered data in the distance domain.
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The following Hankel transform pair connects 
the low-pass wavenumber response function 
to the corresponding impulse response func-
tion and vice-versa:

( ) 2 ( ) (2 )  0

0

H k h r J kr r dr=                                (60)

( ) 2 ( ) (2 )  0

0

h r H k J kr k dk=
                               (61)

where 0J  is the zero-order Bessel function 
of the first kind and 2 2r x y= + . The above 
pair is derived from the properties of the two-
dimensional Fourier transform of radially sym-
metric functions (e.g. Buttkus, 2000). Accord-
ingly, the filter coefficient in the distance do-
main can be calculated as

( ) 2 ( ) (2 )  0

0

b r B k J kr k dk=                                 (62)

where

x y

1 1
( ) ( , )  rect   rect ( )   ( )

2 2
B k B k k x y H k x y H k

x y
= = =     (63)

that yields

L L
RL

L L

2( ) 2( )
( ) tanh tanh (2 )  0

0

k k k k
b r x y J kr k dk

r r     (64)

The value of the first HT function is always unity 
for positive values of the wavenumber, and ac-
cordingly equation (64) reduces to

L

L

( )
( ) tanh (2 )  RL 0

0

2 k k
b r x y 1 J kr k dk

r      (65)

Finally, via the application of the rectangle rule 
of integration, the above integral can be substi-
tuted by the following sum:

L

L

2( )
( ) tanh (2 )RL 0

j 1

j k k
b r x y k j 1 J rj k

r=
 (66)

Since (0) 10J = , the numerical value of the co-
efficient at the centre of the filter (where r=0) 
can be given as follows: 

L
RL

L

2( )
(0) 1 tanh   

0

k k
b x y k dk

r         (67)

If the half-width of the transition zone ( Lr ) ap-
proaches zero, then the limit of the HT window 
yields a rectangular function whose size is 
equal to L2k , as shown in the Appendix (A11):

( )
L

L
L

0 L

1 2( )
lim 1 tanh rect

2r

k k
k

r
.

This result leads to the easy determination of 
the desired value as follows:

( )RL L(0) 2 rect   

0

b x y k k dk=

L 2
2 L

RL L
Nx N

(0) 2   
4

k

y0

k
b x y k dk x y k

k k
= = =

      (68)

where Nxk and Nyk  are the values of Nyquist 
wavenumbers corresponding to the x and y 
variables, respectively. After determining the 
filter spectrum of a low-pass filter in the wav-
enumber domain, a band-pass filter spectrum 
(see Figure 5f) can be derived from the subtrac-
tion of two low-pass filters from each other:

[ ]RB L H L L( ) ( , ) ( , )B k x y H k k H k k       (69)

Substitution of equation (65) into (69) for the 
high- ( Hk ) and low-end ( Lk ) wavenumbers of 
the filter pass-band, respectively, yields

H L
RB

H L

2( ) 2( )
( ) tanh tanh

2

x y k k k k
B k

r r     (70)

Consequently, the filter coefficients can be cal-
culated from the following integral equation:

H L
RB

H L

2( ) 2( )
( ) tanh tanh (2 )  0

0

k k k k
b r x y J kr k dk

r r

.   

                         (71)
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The numerical value of the filter coefficients at 
the centre of the filter can be determined with 
the help of (68) in the same way: 

2 2
2 2 H L

RB H L
Nx Ny

( )
(0) ( )

4

k k
b x y k k

k k      (72)

The wavenumber response of a high-pass filter 
(see Figure 5g) and spectrum can be derived in 
the conventional way used for one-dimensional 
cases:

RH RL H( ) 1 ( , )H k H k k                                                        (73)

( ) ( )[ ]RH Nx Ny RL H( )  rect  rect 1 ( , )B k x k y k H k k   (74)

After algebraic manipulation, the wavenumber 
response of the high-pass filter becomes

( ) ( )RH Nx Ny

H H

H H

( )  rect  rect

1 2( ) 2( )
         tanh tanh

2

B k x k y k

k k k k
x y

r r

=

    (75)

In order to derive an expression for the filter 
coefficients in the distance domain, the two-di-
mensional Fourier transform has to be applied 
to the above equation. The transform of the first 
term produces the following pair:

( ) ( )NyNx
Nx Ny

sin(2 )sin(2 )
 rect  rect

k yk x
x y x k y k

x y
 (76)

 The second term can be evaluated by the Han-
kel transformation, accordingly the filter coef-
ficients in the distance domain can be given as:

NyNx
RH

Nx Ny

H H

H H

sin(2 )sin(2 )
( )

2 2

2( ) 2( )
               tanh tanh (2 )  0

0

k yk x
b r

k x k y

k k k k
x y J kr k dk

r r

=

   

(77)

Since the first term is always zero, except for 
x=0; y=0, and the first HT in the integral is al-
ways equal to one for positive values of the 

variable k, the above equation can be simpli-
fied to

H

H

2( )
( ) 1 tanh (2 )  RH 0

0

k k
b r x y J kr k dk

r
   (78)

The filter coefficients at particular points are

Ny H
RH

Ny H

sin( ) 2( )
( 0, ) 1 tanh (2 )  0

0

2 k y k k
b x y x y J kr k dk

2 k y r
    (79)

Nx H
RH

Nx H

sin(2 ) 2( )
( , 0) 1 tanh (2 )  

2
0

0

k x k k
b x y x y J kr k dk

k x r
   (80)

H 2
2 H

RH H
Nx Ny

(0,0) 1 2 .   1  1

k

0

k
b x y k dk x y k

4k k    (81)

Any band-stopping filter (see Figure 5h) can 
be constructed by the summation of low-and 
high-pass filters. The summation of equations 
(63) and (77) yields, after some simplification 
taking into account the properties of the HT 
function, the following expression:

( ) ( ) H L
RS Nx Ny

H L

2( ) 2( )
( )  rect  rect tanh tanh

2

x y k k k k
B k x k y k

r r    (82)

The inverse Fourier transformation of the above 
equation provides the time domain expression 
that serves in the calculation of filter coeffi-
cients:

NyNx
RS

Nx Ny

sin(2 )sin(2 )
( )

2 2
r

k yk x
b r I

k x k y
= +                    (83)

where

H L

H L

2( ) 2( )
tanh tanh (2 )  r 0

0

k k k k
I x y J kr k dk

r r
.

Some points require special care and hence 
the following equations should be applied in 
the calculation of the filter coefficients:

RS( )     0,  0rb r I x y

                       

(84)
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Ny
RS

Ny

sin(2 )
( 0, )

2
r

k y
b x y I

k y
= = +                                         (85)

Nx
RS

Nx

sin(2 )
( , 0)

2
r

k x
b x y I

k x
= = +                                         (86)

The value of the filter coefficient at the centre 
can be obtained by the summation of (68) and 
(81):

2 2
2 2H L

RS H L
Nx Ny

( )
(0,0) 1 1 ( )

4

k k
b x y k k

k k
   (87)

APPLICATION EXAMPLES

The computer programs that are used to pro-
duce the examples given here as well as sup-
plementary materials consisting of several ex-
amples, data files and an instruction file can 
be requested from the author.  The programs 
are written in PV-WAVE (see http://www.vni.
com/).  Both measured and test data sets can 
be processed, and these make them useful 
both in professional and educational applica-
tions, respectively. The 1D computer programs 
fr1D and tm1D perform filtering operations in 
the frequency and time domains, respectively. 
The user can generate a test data set by us-
ing some signals, namely; a sum of sinusoidal 
functions, a serial combination of individual si-
nusoidal functions, a set of chirp signals and a 
vibroseis sweep. The frequency varies with time 
in the latter two signals. The filtering operation 
begins with the fast Fourier transform (FFT) of 
the data. The transformed data is multiplied by 
the filter spectrum in the frequency domain and 
then transformed back to the time domain by 
the inverse Fourier transform. The FFT algo-
rithms use positive index numbers for the data 
points and thus compute the spectrum in the 
frequency range of zero to twice the Nyquist 
frequency. This is not problematic, since the 
calculated spectrum is periodic, with a period 
defined by the number of data points and sam-
pling interval. However, the transformed data 
is shifted in the range of Nf  to Nf . Instead 

of this procedure, the computer program fr1D 
calculates the filter spectrum in the range 0 to 

N2 f

 

and directly multiplies it by the output of 
the FFT algorithm before proceeding with the 
inverse Fourier transform. The shifted filter 
spectrum of a low-pass 1D filter resembles a 
high-pass filter (see Figure 6a). Accordingly, 
it can be obtained from the subtraction from 
unity of a HT window whose cutoff frequencies 
equal Lf  and N L2 f f  (see equation (14) for 
comparison):

L N L
L

L L

1 2( ) 2( 2 )
( ) 1 tanh tanh

2

f f f f f
H f

r r   (88)

Figure 6b illustrates an example of a band-pass 
filter whose spectrum can be obtained by the 
subtraction of two low-pass filters as follows:

L N L

L L

B

H N H

H H

2 ( ) 2 ( 2 )
tanh tanh

1
 ( )

2 2 ( ) 2 ( 2 )
 tanh tanh

 f f  f f f
  

r r
H f

 f f  f f f
  

r r

=

  (89)

The shifted spectrum of a high-pass filter (Fig-
ure 6c) is similar to the spectrum of a low-pass 
filter with cutoff frequencies Hf  and N H2 f f :

H N H
H

H H

1 2 ( ) 2 ( 2 )
 ( ) tanh tanh

2

 f f  f f f
H f   

r r
    (90)

Finally, the shifted spectrum of a band-stop-
ping filter (Figure 6d) can be obtained from the 
combination of the shifted low- and high-pass 
filters. Some examples demonstrating the ap-
plication of the above-mentioned filters with 
the help of test data produced from the sum-
mation and combination of sinusoidal functions, 
chip signal and vibroseis sweep, are provided 
in the supplementary material. The computer 
program tm1D performs equivalent operations 
in the time domain. Since multiplication in the 
frequency domain is equivalent to convolution 
in the space or time domain, convolution of the 
input data by filter coefficients produces the 
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desired output. Any 1D filter must exist in both 
the positive and negative time direction and 
the number of filter coefficients must be odd to 
satisfy the symmetry condition, or a time shift 
will occur in the output data. Moreover, in order 
not to cause amplitude distortion, the sum of 
the filter coefficients should be equal to (or at 
least be very close to) unity for the low-pass 
and band-stopping filters, and it should be 
equal to zero for the band- and high-pass fil-
ters. The value of this sum is established via the 
use of an input function consisting of a series 
of equally spaced samples representing a con-
stant, which has a zero frequency component 
in the frequency domain. In this case, the low-
pass and band-stopping filters should pass 
these constants without any change, while the 
output of the band- and high-pass filters must 
be equal to zero. The individual values of each 
filter coefficient versus time can be computed 
using the corresponding time domain expres-
sions of (6), (12), (17) and (24). The limiting val-
ues of the filter coefficients at the centre of the 
filters are given in equations (8), (13), (18) and 
(23), respectively.  The amount of output data 
will be less than that of input data in the time 
domain filtering. The digital filtering operation 

commences with the matching of the filter and 
input data at the initial abscissa values. The 
sum of the products of the corresponding sam-
ple values of the filter and input data produces 
the first output sample value. The abscissa 
value of the first output sample is equal to the 
abscissa value of the input datum multiplied 
by the central filter coefficient.  Consequently, 
the length of the output data will be shortened 
with filter length, namely by half of the length 
between the beginning and end parts of the in-
put data. For this reason, the filtering operation 
should preferably be performed in the frequen-
cy domain - except in those cases where com-
putational cost becomes a significant factor. 

Four computer programs; b2d-fr, b2d-tm, r2d-
fr and r2d-tm employ two-dimensional box-
shaped (first character b) and radially symmet-
ric filters (first character r) in both the frequency 
and time domains (ending with fr and tm, re-
spectively). The frequency responses of these 
filters have already been illustrated in Figure 
5. These programs read measured data in the 
three column xyz file format, as well as being 
used to create test data sets. There is also 
the option of saving both the original and fil-
tered data in spreadsheet format. The following 

Figure 6.  Shifted frequency responses of one-dimensional low- (a), band- (b), high-pass (c) and band-stopping 

filters. The frequency axis is limited to between zero and twice the Nyquist frequency.

Șekil 6. Bir-boyutlu alçak- (a), aralık- (b), yüksek-geçișli (c) ve aralık-durdurucu süzgeçler için kaymıș frekans böl-
gesi yanıtları. Frekans ekseni sıfır ile Nyquist frekansının iki katı arasında sınırlandırılmıștır.

Başokur 83



expressions were used for the production of 
test data sets:

[ ] ( ) e cos( ) sin( )r
1 2z r a f r b f r= +                     (91)

[ ] ( ) e cos( ) sin( )r
1 2z r a f x b f y= +                       (92)

[ ] ( ) e cos( ) sin( )r
1 2z r a f x b f y=                               (93)

where

  
2 2r x y= + . 1f  , 2f  and a, b are the fre-

quencies and amplitudes of cosine and sinus 
functions, respectively. The first function de-
fines the sum of two circular sinusoidal func-
tions. In the second and third expressions, the 
cosine and sinus functions are dependent on 
either variable x or y, defining a sum or multi-
plication of two perpendicular sinusoidal func-
tions, respectively. The amplitude of a sinusoi-
dal function is attenuated depending on the 
coefficient ( ) of the radially symmetric expo-
nential function. Zero values result in no attenu-
ation. The direction of the sinusoidal function 
with respect to coordinate axis can be rotated 
in (92) and (93), but this is not necessary for 
equation (91) since it produces a radially sym-
metric data set. 

Figure 7 illustrates an example of the 2D dig-
ital filtering operation. The test data were pro-
duced by the use of (92). Two perpendicular 
sinusoidal functions oscillating at frequencies 
of 5 and 15 Hz were combined to construct 
a test data set (see Figure 7a). In order to ap-
ply a slight attenuation, the coefficient of the 
exponential function was chosen to be equal 
to unity. A low-pass box-shaped filter whose 
cutoff frequency and half-width were equal to 7 
and 2 Hz, respectively, was applied to this data 
set in the frequency domain. The correspond-
ing output in the time domain was obtained by 
the inverse Fourier transform, and is illustrated 
in Figure 7b. The directional sinusoidal function 
oscillating at 15 Hz is completely suppressed 
while the 5 Hz sinusoidal function perpendicu-
lar to the former remains in the data set. 

CONCLUSIONS

It has been shown that the signum and unit 
step functions, and consequently the rectan-
gular function, can be defined by a combina-
tion of HT functions. These definitions lead to 
frequency response functions that are analyti-
cal in whole space from  -  to +  without 
any discontinuity. The suggested HT windows 
provide an opportunity to precisely adjust the 
transition band of the frequency response 
function. In view of the definitions provided in 
this paper, any ideal filter can be considered as 
a limiting case of the corresponding HT filter. 
The related filter function in the time domain 
can be derived analytically from the frequency 
domain expressions, except radially symmetric 
two-dimensional filters. Since the time domain 
filter parameters are directly related to the fre-
quency domain (for example, the half-width of 
the transition band), the user can easily adjust 
the filter coefficients in the time domain by im-
agining the frequency response function. The 
suggested filters permit the construction of a 
relatively short filter in the time domain, since 
the ripples of the response function can be 
suppressed by controlling the value of the half-
width of the transition band.

Other types of filter can also be potentially de-
signed by using the basic filters provided here. 
For example, a notch filter that removes noise 
at a particular frequency instead of a frequency 
band, can be constructed by narrowing the 
stopband of a band-stopping filter.  This can 
be realized in such a way that the terminating 
frequency of the low passband is made equal 
to the starting frequency of the high passband. 
Consequently, the terminating frequency of the 
filter passband becomes equal to the low-end 
frequency plus the half-width of the transition 
band. Similarly, the starting frequency of the 
succeeding passband becomes equal to the 
high-end frequency of the filter stopband mi-
nus the half-width of the subsequent transition 
band.

APPENDIX A. BASIC DEFINITIONS

The frequency reject filters are constructed us-
ing appropriate window functions that acts as 
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substitutes for the role of the rectangular func-
tion in the ideal filters. The rectangular function 
can be derived either from a self combination 
of signum or unit step functions. For this rea-
son, definitions and Fourier transforms of the 
signum and unit step functions will be intro-
duced using certain properties of the HT func-
tion. This permits the definition of the rectan-
gular function as the summation of two shifted 
HT functions.

A1. Definition and Fourier transform of the 

signum function

The following form of the HT function is used in 
this paper:

tanh
x

r
                                (A1)

where x is an independent variable that may 
represent time, distance, frequency etc. The 
HT function becomes equal to zero and 
unity when its argument is zero and greater 
than 5, respectively. In connection with this 
behaviour, r denotes the approximate length of 
the transition from zero to unity, with the total 
transition from -1 to 1 about 2r.   is a constant 

that defines the degree of approximation to 
unity at the point x=r. The percent relative error 
in the approximation can then be estimated as 

follows [ ]1 tanh( ) 100% .        (A2)

For example, the percent relative errors for 
=2 and =3 are % 3.6 and % 0.5, respectively. 
Although the latter seems a better approxima-
tion, the selection of =2 is a compromise 
between a good approximation to unity and 
the exhibition of well behaviour around x=r in 
view of the linear filter theory. The width of the 
transition becomes narrower as the value of 
r decreases. Hence the limit of the HT func-
tion approaches the signum function as r ap-
proaches zero:

0

 -1,   0

lim tanh signum( )   0,   0

  1,    0
r

x
x

x x
r

x

<

= = =

>      (A3)

The Fourier transform of the signum function 
can also be obtained from the above property. 
The Fourier transform of definition (A1) can be 
derived from the following transform pair given 
by Bracewell (1965, page 366):

Figure 7.  Low-pass filtering of a test data set (upper panel) consisting of two perpendicular sinusoidal functions (5 
and 15 Hz). The high frequency sinusoidal is suppressed as a result of frequency domain filtering carried 
by a box-shaped frequency response function. The cutoff frequency and half-width are equal to 7 and 2 
Hz, respectively.

Șekil 7. Birbirine dik iki sinüzoidalin (5 ve 15 Hz) toplamından olușturulan deneme verisine (üstte) alçak-geçișli süz-
geç uygulaması. Kutu-biçimli frekans yanıt fonksiyonu ile gerçekleștirilen frekans bölgesi süzgeçleme so-
nucunda yüksek frekanslı sinüzoidal bastırılmıștır. Kesme frekansı ve yarı-genișlik değerleri 7 ve 2 Hz de-
ğerlerine eșittir.
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i
tanh( )

sinh( )
x

f           (A4)

with the application of the scaling property 
yielding

2

i
tanh

sinh( / )

x r

r rf ,       (A5)

where i= -1 , f denotes frequency and the 
symbol  represents a Fourier transform 
pair. Since the limit of the left-hand side of the 
transform pair approaches the signum function 
as r approaches zero, the limit of the right-hand 
side in the frequency domain, by the applica-
tion of L’Hôpital’s rule, then provides the Fou-
rier transform of the signum function:

20 0

i i
lim tanh signum( ) lim

sinh(  / )r r

x r
x

r fr f
 (A6)

A2. Definition and Fourier transform of the 

unit step function

The unit step function can be defined in terms 
of signum and HT functions as a result of defi-
nition (A3):

0

 0,     0

1 1 1 1 1
( ) signum( ) lim tanh  ,    0

2 2 2 2 2

 1,      0

r

x

x
U x x x

r

x

<

= + = + = =

> (A7)

In this case, the Fourier transform of the unit 
step function can be easily derived from (A6) 
as follows:

1 1 1 i
( ) signum( ) ( )

2 2 2 2
U x x f

f
(A8)

since

1 ( )f .

It is also possible to define the signum function 
in terms of unit step function:

signum( ) ( ) ( ) 2 ( ) 1x U x U x U x ,     (A9)

where U(-x) denotes the negative unit step 
function defined in the range ( );  0 . These 
results indicate that the unit step function can 
be defined, at first, from the HT function by us-
ing equation (A7), with the signum function then 
defined in terms of the unit step function. For 
this reason, both functions have equal impor-
tance in digital filter theory.

A3. Definition and Fourier transform of the 

rectangular function

The rectangular function can be obtained from 
either two shifted signum or unit step functions:

[ ]
1

rect( ) signum( ) signum( ) ( ) ( )
2

L x L x L U x L U x L (A10)

where L is the half width of the rectangu-
lar function. The amplitude of the rectangular 
function equals 0.5 at abscissa points x=-L and 
x=L. Furthermore, as a result of definitions (A3) 
and (A7), the rectangular function can be de-
fined as the limiting case of the combination of 
two shifted HT functions where =2:

0

 0,    

1
lim ( ) rect( )  ,   

2

 1,     

r

x L

P x L x L

x L

>

= = =

<

          (A11)

where

1 2( ) 2( )
( ) tanh tanh

2

x L x L
P x

r r   (A12)

The r constant gives a good approximation to 
the half-width of the transition of the P(x) func-
tion.  However, the above form differs in param-
eterization from the previous window applied to 
frequency reject filters by Basokur (1998): 
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1 ( ) ( )
( ) tanh tanh

2 2 2

x L x L
P x

L L

 

(A13)

where the constant ( ) is known as the ‘smooth-
ness parameter’, since it controls the slope of 
the transition. The window given by (A13) is a 
modified version of Johansen and Sorensen’s 
(1979) P-function. It should be noted that the 
width of the transition could not be directly es-
timated in advance by using the smoothness 
parameter of Johansen and Sorensen (1979).  

The Fourier transform of (A12) can be derived 
from the application of the shift theorem to the 
Fourier transform pair given in equation (A5):

2

1 2( ) i
tanh exp(2 )

2 4 sinh( / 2)

x L r
Lf

r rf
,

2

1 2( ) i
tanh exp( 2 )

2 4 sinh( / 2)

x L r
Lf

r rf

since

( ) ( )exp( 2 )f x L F f Lfm m .           (A14)

The summation of both sides of the above 
equations and the use of the Euler definition 
produce the following result:

2

sin(2 )
( )

2 sinh(  / 2)

r Lf
P x

r f .                    (A15)

Since the shape of the P-function resembles a 
box-car function for small values of r, the cor-
responding function in the frequency domain 
thus resembles a sinc function. This can be 
shown by substituting 4 /r L=  into (A15), 
yielding 

sin(2 )
( ) 2

sinh(2 )

Lf
P x L

Lf .                    (A16)

The right-hand side of the above transform was 
referred to as the ‘sinsh’ function by Johansen 
and Sorensen (1979). Since sinh( x ) x  for 

small arguments, if  (and consequently r) is 
sufficiently small then the Fourier transform of 
the rectangular function can be derived as fol-
lows:

0

sin(2 )
lim ( ) rect( )

Lf
P x L

f .           (A17)
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