KITALARIN ÇARPIŞMASI VE İLGİLİ KOMPLEKS DEFORMASYON: MARAŞ ÜÇLÜ EKLEMİ VE ÇEvRE YAPILARI

CONTINENTAL COLLISION AND RELATED COMPLEX DEFORMATION: MARAŞ TRIPLE JUNCTION AND SURROUNDING STRUCTURES, SE TURKEY

Levent GÜLEN, Aykut BARKA, M. Nafi TOKSÖZ
Earth Resources Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

ÖZ

ABSTRACT

In this paper, we examined the Maraş triple junction and surrounding structures in terms of their types, relative ages and their contributions to the total shortening, in order to understand the collisional processes between Arabia and Eurasia. According to the results obtained from this study, it is observed that the indenter Arabian plate is also deformed during this collision, expressed by the occurrence of kink structures along the Dead Sea transform, fold zone along the Bitlis Frontal thrust and also being fragmented into small wedge shape blocks at the collisional front. These kink structures and fold zones develop with the increase of movement. During this collision the age of major fault zones which give rise to side escape of the continental blocks away from the maximum shortening, is somewhat younger than those frontal thrusts. This is clearly evident by about 25 km offset of westward extension of original Bitlis frontal thrust along the East Anatolian fault. We also attempt to make a tentative model in which we tried to quantitatively calculate how the total shortening is partitioned by the existing structures within this collision zone.

GİRİŞ

Şekil 1. Türkiye ve çevresinin önemli tektonik uniteleri. Büyük oklar levha ve blokların hareket yönlerini göstermektedir (Ketin 1985 ve Şengör ve diğerler, 1985'ten derlenmiştir.)

Figure 1. Important tectonic units of Turkey and its vicinity. Long arrows represent the direction of plate and block movements (Modified from Ketin, 1985 and Şengör et al., 1985)

"Maraş Üçlü Eklemleri" (MÜE), güney Anadolu'da Oğuz Dere ile Doğu Anadolu fayının...
kesiştiği ve Arabistan, Afrika ve Avrasya levhalarının birleştigi yerdir (Şekil 1-3). Dar bir alan kaplanmasina ragmen MÜE, bu kisasal cärşimmanın en önemli anahtar bölümüne içermektedir (Şekil l-4). Bu alan, içeri doğru sokulan (indenter) Arabistan levhasının kuzeybatı kögesini ve aynı zamanda deforme olan konsu Afrika ve Avrasya levhalarını kapsamaktadır. Bu kisasal cärşimın sonunda görülebilecek bütün karakteristik özellikleri içerir.

BÖLGESEL TEKTONİK

ÖNEMLİ TEKTONİK YAPILAR

Ölüdeniz transform fayı kuzeyde iki büyük segment'ten oluşmaktadır; güney de Gharb segmenti, kuzeyde ise Karasu segmentidir. Gharb segmenti K-
G doğrultuda olup segmentin orta kesimlerinden kuzey-}

cye iki paralel fay şeklinde uzanmaktadır. Ayrıca
doğudaki fayda Antakya ya doğru iki kola ayrılmaktadır (Şekil 4). Karasu segmenti 150 km
uzunluğunda olup açıma karakterindeki bir çok en
echelon basamaklardan oluşmaktadır. Bu basamak
ların arasında küçük pullapartlar gelişmektedir (Şekil
5). Karasu segmenti ile Ghab segmenti arasında
20°.lik doğrultu farkı ve 12 km genişliğinde pull-
apart basamağı vardır ve Amık ovası bu mekanizma
öyle bir ağbaşı olarak açılmaktadır. Bu sebebele hep graben
(örneğin Muehberger 1981) veya yarı graben
(Cem en ve Perinçek 1987) olarak yorumlanan Amık-
Karasu çöküntüsü aslinda doğrultu atmosfik faylar, Ölüdeniz fayının kuzeydeki iki segmenti, Ghab ve
Karasu, arasında gelişen bir pull-apart yapıdır (Şekil
5). Fakat bu basit bir pull-apart olmayıp segmentler
arasındaki 20°.lik dar açı, bu sistem içinde açılma ile
ayrı zamanda kompresyonal yaplarının oluşmasına da
neden olmaktadır (Kırkhan-Gazianteş kırk'ı gibi).
Karasu segmenti kuzeyde Doğu Anadolu fayı (DAF)
ile MÜÉ de kesilir.

KD-GB uzanımlı sol-yanal Narlı fayı 80 km
uzunluğundadır ve Yalçın (1981) tarafından
çalışmıştır (Şekil 4). Bu çalışmaya göre Narlı fayı
boyunca Holosen fan deposi terleri kesilerek sol-yanal
ötelemiştir. Bu fay, Arab levhasının içinden üçgen
bir bloğu belirleri ve bu çarışma sırasında Arab Lev-
hasının parçalarına ayrıldığı göstermektedir. Bu
fayın yaşının Doğu Anadolu fayından daha genç
olduğunun düşünülmektedir.

KD-GB uzantılı Ecmiş fay yaklaşık 100 km uzunluğundadır ve birkaç en eşek segment’ten oluşmaktadır. kFayın esas yön Eosendir (Yetiş ve Demirkol 1984) fakat genç tektonik dönemde "hortalak yapacak" (Şengör, 1980) olarak. Çiçekli-Göksu fay zonu ile benzer özellikle, Anadolu Bölgenin iç deformasyonu temsil eder. Fayın aktivitesi morfolojik, tarihvel ve aletsel deprem ve verileriyle belirlenmiştir (Örneğin, a-Pozantı ve Çanardı arasında fay Holosen yaşlı kanyonları kesmektedir (ayrıca Yetiş ve Demirkol, 1984 de bakınız), b-23 Ağustos 1835 depremi (Karnik, 1969) ve c-1939 Erzincan depremi artış şoklarından birisi, 20 Şubat 1940 De veli depremi, bu fay üzerinde meydana gelmiştir.

Çalışma alanı içinde göze çarpan teolitik ve veya halif alkan karakterdeki (Bilgin ve Ercan 1981; Cemen ve Perincek 1987) yolakanma çapıta sonrası, yüksek konu edilgen işerilen yapırlar (örneğin pull-apart yapar) bağlı olarak gelişmektedir (Şekil 5).
TARIHSEL DEPREMLER

Figure 6.a) Distribution of the settlements (towns) in the Eastern Mediterranean region affected from the earthquakes that occurred during 10-1000 AD. Large spots represent areas destroyed at least four times; medium spots one to four times; small spots the areas affected (Ambraseys, 1970). b) Time and intensity distribution of the earthquakes that occurred within the encircled area of figure 6a (For references see text).
Şekil 7. Tarihsel depremlerin iki farklı alan için zaman-şiddet ilişkisi. a) Gharb segmenti ve çevresi, b) Karasu segmenti ve çevresi. (Sayılar ilgili depremde ölenleri miktarını göstermektedir.).

Figure 7. Time-intensity relationship of the historical earthquakes for two different areas. a) Gharb segment and its vicinity; b) Karasu segment and its vicinity. Numbers refer to the causalities in the related earthquakes.

ALETSI DEPREM VERİLERİ

Tablo 1. Fay düzlemi çözümlerinin sayısal değerleri.
Table 1. Numerical values of the fault plane solutions.

<table>
<thead>
<tr>
<th>No. Number</th>
<th>Tarih / Date</th>
<th>Düzlem 1 Plane 1</th>
<th>Düzlem 2 Plane 2</th>
<th>Ms</th>
<th>Kaynaklar / References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04.08.1951</td>
<td>Azm°: 297 dip°: 68</td>
<td>Azm°: 033 dip°: 75</td>
<td>5.9</td>
<td>b, d</td>
</tr>
<tr>
<td>3</td>
<td>04.07.1967</td>
<td>Azm°: 352 dip°: 74</td>
<td>Azm°: 247 dip°: 50</td>
<td>5.0</td>
<td>a,c</td>
</tr>
<tr>
<td>4</td>
<td>06.29.1971</td>
<td>Azm°: 290 dip°: 28</td>
<td>Azm°: 054 dip°: 72</td>
<td>5.0</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>07.11.1971</td>
<td>Azm°: 292 dip°: 68</td>
<td>Azm°: 188 dip°: 58</td>
<td>5.2</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>08.17.1971</td>
<td>Azm°: 290 dip°: 30</td>
<td>Azm°: 052 dip°: 74</td>
<td>5.0</td>
<td>a,b</td>
</tr>
<tr>
<td>7</td>
<td>05.01.1975</td>
<td>Azm°: 302 dip°: 68</td>
<td>Azm°: 187 dip°: 44</td>
<td>4.8</td>
<td>a</td>
</tr>
<tr>
<td>8</td>
<td>07.15.1976</td>
<td>Azm°: 258 dip°: 36</td>
<td>Azm°: 027 dip°: 64</td>
<td>4.7</td>
<td>a</td>
</tr>
</tbody>
</table>

Şekil 8. 1901-1983 yılları arasında, MÜE ve çevresinin sismitesi. (Kaynaklar için metne bakınız).
Figure 8. Seismicity of MÜE and its vicinity for the period 1901-1983. For references see text.

328
c) Gharb segmenti ve çevresindeki depremlerin önemli bölümü bu segmentin sol-yanal hareketi ile ilgili olabilirler, başka bir deişle aynı yapı taraflandan oluşturuldukları şekilde yorumlanabilir.

b) Buna karşılık Kuzeydeki Karasu segmenti boyunca yer alan depremler değişik yapılar tarafından oluşturuldukları düşünülmüştür. Örneğin Karasu segmenti dışında, KGK ait depremler, Narlı fayına ait depremler, Amik-Karasu pull-apart’a ait depremler gibi.

TARTIŞMA VE SONUÇLAR

Şekil 10 a da kusasal çarpışma sırasında gelişen deformasyonu belirlemek amacı ile yapılan plastik ve rigid bloklardan oluşan deney gösterilmektedir (Tapponier ve diğ., 1986, Peltzer, 1983). Bu deneyde rijid bloğun yukarı hareket ettirilmesi ile plastik

Şekil 12′deki modelde, ana ray zonlarından ve levhaların birbirlerine göre bilinen kayma hızları (slip rate) kullanılarak bu kütasal çarpışma sırasında, kalsalmanın ne kadarnın blokların kaşıntısı, blok ve veya levhaların iç deformasyonu, ve çarpışan levha smırları (bindirmeler ve krvmlar) tarafından kullanılması, bütün Doğu Anadolu ve Maraş çevresi yapıları gözönünde alınarak hesaplanmak istenmiştir. Bu hesaplamada bilinmeyen bazı deformasyon miktarlarını hesaplamak için, Molnar ve diğ.(1987) nin

Şekil 10. Indentasyon deneyi (a) (Tapponier ve diğ., 1986) ve MÜE ve çevresi yapıları (b) arasında karşılıştırmalar (B1 ve B2 yana doğru kaçıran blokları ve a,b,c..a'b'c.. benzer referans noktalarını göstermektedir.)

Figure 10. Indentation test (a) (Tapponier et al, 1986) and comparison of structures of the MUE and its vicinity (b). B1 and B2 represent laterally moving blocks and a,b,c..a'bc.. represent corresponding reference points.

Asya için yaptıkları çalışmadan bazı oranlar alınmıştır. Bu modelde aşındırıcı şu ön kabuller yapılmıştır.

a- Ana doğrutu atılım faylar boyunca, örneğin KAF, DAF gibi, doğrutu atılım kayma hızlarında (a,b,c..) ilgili düşey bileşenleri ve veya yine doğrutu atılım faylarla ilişkili, yakın çevrede bindirmelerindeki kalsalma ifade etmek amacı ile ana doğrutu atından elde edilen kalsalmanın (a'-cos.a) yarısı ilave edilmiştir. Fayın doğrultusunun kuzey
Figure 11. Complex stress distribution of MUE and its vicinity as obtained from the finite element model (Kasapoğlu and Toksöz, 1986).

BOBx = a'' + b''/2

Bu modelden ve ilgili hesaplamalardan şu sonuçlar çıkmaktadır,

a- Anadolu bloğu içindeki birim kısalma (w; Tablo 2c) batıya doğru azalmaktadır. Bu daha çok bloğun üçgen şeklindedeki geometrisinden kaynaklanmaktadır. Bu azalma bloğun bu kısmında gözlenen deformasyon miktarı ile uygunluk içindedir. Örneğin Erzincan-Karlıova Hazar göllü üçgeni Anadolu

Figure 12. Numerical schematic model of the Eastern Anatolia and its vicinity showing the sharing of total shortening among the tectonic structures formed during the continental collision KAF: North Anatolian Fault; DAF: East Anatolian Fault; KDAF: Northeast Anatolian Fault; ODF: Dead sea Fault; BOB: Bitlis Forethrust; AB: Anatolian Block; KDAB: Northeast Anatolian Block; ARBL: Arabian Plate; AFRKL: African Plate. A, B, C, D... refers to the change of the areas of the structures according to their distribution in the region; the subscripts are the amount of shortening in this region (mm/yr). Number along the major structures indicate (N-S) shortening (mm/yr) of the structures. Arrows show the direction of plate and block movements. kk', II', mm'... refers to the N-S lengths of the block boundaries. For unit N-S shortening (w) refer to table 2.
Table 2. Numerical values: a) for strike-slip faults, b) for thrust and fold structures, c) for internal deformation of the blocks.

A - Doğrultu Atım Fayları / Strike - Slip Faults

<table>
<thead>
<tr>
<th>Fay İsmi Name of Fault</th>
<th>Kuzey Anadolu fayı (KAF) North Anatolian fault</th>
<th>Doğu Anadolu fayı (DAF) East Anatolian fault</th>
<th>KAD Anadolu fayı (KDAF) NE Anatolian fault</th>
<th>Narlı fayı (NF) Narlı fault</th>
<th>Öldeniz fayı (ODF) Dead Sea fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaşı (Milyon yıl) Age (MY)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>3</td>
<td>A-22 (5)</td>
</tr>
<tr>
<td>Yer Değişirme Hızı (a) mm/yıl rate of Displacement (a) mm/year</td>
<td>I. 8 II. 5</td>
<td>5</td>
<td>3</td>
<td>17</td>
<td>G-B-10 (10)</td>
</tr>
<tr>
<td>Lateral displacement in terms of N-S shortening</td>
<td>I. 3.3 II. 2.1</td>
<td>2.9</td>
<td>0.7</td>
<td>0.77</td>
<td>—</td>
</tr>
<tr>
<td>Total shortening for strike-slip faults</td>
<td>I. 5.1</td>
<td>4.3</td>
<td>1.1</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>α Azimuth of the fault plane</td>
<td>65</td>
<td>55</td>
<td>75</td>
<td>40</td>
<td>90</td>
</tr>
</tbody>
</table>

B - Bindirme ve Kivrım yapıları / Thrust and Fold Structures

<table>
<thead>
<tr>
<th>Bitlis Ön Bindirmesi (BÖB) Bitlis frontal thrust</th>
<th>Kırkhan-Gaziantep Kırkı (KÖK) Kırkı</th>
</tr>
</thead>
<tbody>
<tr>
<td>x*</td>
<td>y*</td>
</tr>
<tr>
<td>Yaşı (MY) Age (MY)</td>
<td>3.5</td>
</tr>
<tr>
<td>Kısaltma hızı (mm/yıl) Rate of Shortening (mm/year)</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* x,y,z Bitlis Ön bindirmesinin üç ayrı bölümlü göstermektedir (Şekil 12). x,y,z Show three different sections of Bitlis frontal thrust

C - Blokların İç Deformasyonu / Internal Deformation of Blocks

<table>
<thead>
<tr>
<th>Anadolu Bloğu Anatolian block</th>
<th>KD Anadolu. Bloğu NE Anatolian block</th>
<th>Pontid/Karakteriz Pontides / Black Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Kısaltma Hızı Rate of Shortening (mm/year)</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>mm/km. yıl mm/km. year</td>
<td>0.2</td>
<td>0.006</td>
</tr>
</tbody>
</table>

b- Doğu Anadolu blogunda ise kısalma miktar Karhova doğusu ile İran sınırını arasındaki arıktadır ve Doğu Anadolu blogunun iç deformatyonunun fazla olması ile uygundur muktedir. Bu alan içinde deformatyon, bilindiği gibi, çoğulukla, konjüget faylarla ve D-B uzanımlı bindirme ve kırırmlarla temsil edilmektedir.

c- Bu modelde, BOB boyunca kısalmanın 2.5 - 3.5 mm/yıl arasında değiştiği hesaplanmıştır. Bu aralığı fark, BOB'un kuzeye yaptığı arık tepe kısmında, karşı yönde kaçan iki blog bir arada bulunması nedeniyle, bu alanda isabet eden kısalma, BÖB den çok, blokları kaçırsa tarafından kullanılır. Bu sebebe BOB den çok, blokları kaçırsa tarafından kullanılır. Bu sebebe BOB un bu kısmı üzerindeki kısalma miktarının diğer iki yanna göre daha azdır.

BOBy = a" (KAF) + b" (DAF) / 2 - c" (KDAF)

KAYNAKLAR

Peltzer, G., 1983. Naissance et evolution des décrochements lors d'une collision continentale, approche expérimentale, application à la Tectonique de l'Asie, These de 3ème Cycle, Université de Paris VII. 157.

Şengör, A.M.C., Kidd, W.S.F., 1979. Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet, Tectonophysics, 55, 361-76.

TPAO, 1984. XIII. Region Geological map.

